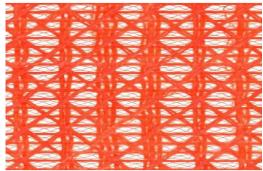
SEISMIC RETROFIT OF HISTORICAL AND EXISTING BUILDINGS

2015

Salim CHEMALY Engineer E.N. Ponts et Chaussees- Paris *RÖFIX - MESC Beirut, Lebanon; Tel 961 (0)3 745 724; E-mail address:* salimchemaly@gmail.com;


Keywords: Earthquake Engineering, Retrofit, Old and New Buildings, Saves Lives, Eco-friendly

RÖFIX SISMACALCE® ANTI-SEISMIC REINFORCEMENT SYSTEM

RÖFIX SismaCalce, a new fiber-mortar composite applied on MASONRY walls, ignoring the steel reinforced concrete structure, is the perfect solution for Earthquake protection. Karlsruhe Institute of Technology (KIT), RÖFIX Germany and S Chemaly (MESC) has developed an anti-seismic reinforcement system consisting of (1) RÖFIX SismaProtect, a multi-axial hybrid high-tech tissue, synthetic and glass fibers, alkali- and corrosion- resistant, with (2) RÖFIX SismaCalce coating, a mineral mortar of NHL-Lime +white cement +polymer +bonder by penetrating chemical reaction agent.

Traditional stone and block masonry buildings have low ductility and are usually severely damaged during strong earthquakes. Their collapse could cause building destruction, occupants and passersby loss. Existing walls retrofitted with the new KIT and RÖFIX system, gain high ductility and low modulus of elasticity and adapt perfectly to the different requirements of new buildings, but also and especially of old and existing ones. During earthquake, the system improves the seismic stability of the global structure: retrofitted masonry walls becoming the main elements of building stability, working as sheer resistant walls holding the slabs. The earthquake-induced movements and energies in the masonry can be absorbed through the fiber mesh (1). Forces and force peaks distributed in the mesh are reduced by the special mortar (2). Although cracks and partial damages of the structure develop, a complete collapse, however, can be prevented, saving human lives.

This innovative, **economic** and eco friendly system also offers thermal insulation and vapor diffusion permeability. It ensures safety, energy conservation, quality of life and property value. It is easy to handle and can be embedded on all masonry walls.

RÖFIX SismaProtect (1) Fibers overcome the shear strength

RÖFIX SismaCalce (2) Stone+mortar overcome the compression strength

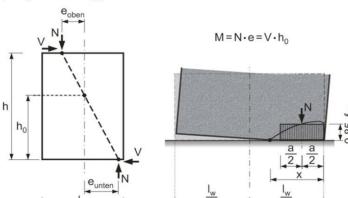
SISMA CALCE MATERIAL PROPERTIES CALCULATION - KIT

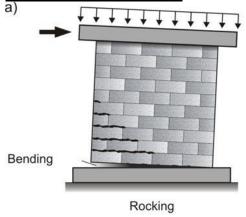
Professor Doctor-Engineer Lothar Stempniewski and Engineer Moritz Urban, Karlsruhe Institute of Technology, Germany, established calculations of material properties and fiber reinforcement.

Parameters for in-plan shear:

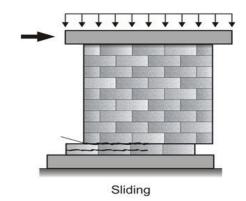
 $\mathbf{f_m} = \text{compressive strength masonry};$

 \mathbf{f}_{tk} = tensile strength masonry;


 $\mathbf{f_d}$ = designed compressive strength of masonry; \mathbf{p} = average normal pressure in the wall;


 V_{Rd} - design value of shear resistance

 \mathbf{d} = wall thickness (mm)


Damage Case a): Rocking

$V_{RD} = l_w^2 \cdot d \cdot p \cdot (1 - p / 0.85 \cdot f_d) / 2 \cdot h_0$

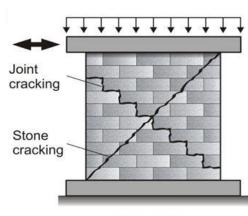
Damage Case b) Shear sliding

According to Mohr-Coulomb: $\tau = c + \mu \cdot \sigma_v$ According to Euro Code 6: $\mathbf{f}_{vk} = \mathbf{f}_{vk0} + \mathbf{0.4} \cdot \boldsymbol{\sigma}_v$ Wall capacity: $V_{Rd} = A_m \cdot (f_{vk0} + 0.4 \cdot \sigma_v)$

with

 f_{vk0} = initial shear strength of masonry under zero compressive strength

 σ_v = compressive strength perpendicular to shear


 $\mathbf{f}_{\mathbf{v}\mathbf{k}}$ = shear strenght of masonry

 V_{Rd} = design value of shear resistance

 A_m = Horizontal wall section

	EC 6: (Table 1) $\underline{\mathbf{f}_{vk0}}$ in N/mm ²						
Normal mor	rtar with Compr	essive Strength	f _{m0 in} N/mm ²	Thin layer of mortar	Light mortar		
2,5	5	10	20	(joints between 1 - 3 mm)	2.ignt mortar		
0,08	0,18	0,22	0,26	0,22	0,18		

Damage Case c) Shear/Tension failure

Shear failure

 \mathbf{f}_{vk0} = initial shear strength according EC 6 (Table 1)

n = number of sisma calce layers being applied (1 or 2)

 $\Psi_{\mathbf{f}}^{\theta} = 0.433$ for Sisma calce

 $T_f^{\theta} = n \cdot f_f^{\theta} \cdot l_{netto} \cdot \sin(\theta)$ with $f_f^{\theta} = 17.9 \text{ N} / \text{mm}^2$

 θ = angle between brick cracks & horizontal wall joint : for Sisma calce: 30°;

 \mathbf{t} = wall thickness (mm)

 $l_{cal} = h_r \cdot tan(\varphi)$ with $h_r = wall height(mm) &$

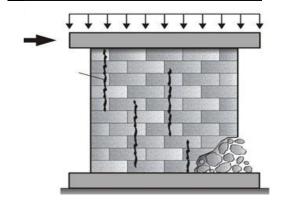
 Φ = Mortar crack angle: "standard walls" ~ 25°- 40°,

slender (thin) walls: 10° - 20°

 $\mathbf{k_{eq}} = 1 - \alpha_{gmax}$; Reduction of vertical acceleration due to max. vertical acceleration for earthquake used σ_v = average pressure caused by vertical loads acting for seismic design (vertical earthquake acceleration not

included)

$$V_{RK} = min \{V_{RK}^{shear}; V_{RK}^{tension}\}$$


$$V_{RK}^{shear} = f_{vk}^{mod} \cdot l_{cal} \cdot t + n \cdot \Psi_f^{90} \cdot T_f^{90}$$

$$f_{vk}^{mod} = (f_{vk0} + n \cdot \Psi_f^{\theta} \cdot T_f^{\theta} \cdot \cos\theta / l_{cal} / t) + \mu (k_{eq} \cdot \sigma_{v+} n \cdot \Psi_f^{\theta} \cdot T_f^{\theta} \cdot \sin\theta / l_{cal} / t)$$

$$V_{RK}^{tension} = f_{bt,cal}^{mod}$$
.l.t / 2,3/(1+ α_v) . SQRT {1 + N_{Rd} / $f_{bt,cal}^{mod}$ /1 /t }

$$f_{bt,cal}^{mod} = f_{bt} + n \cdot \Psi_f^{\theta} / t \cdot (f_f^{\theta_0} \cdot \cos^2 \phi + f_f^{\theta_0} \cdot \sin^2 \phi + f_f^{\theta_0} \cdot \cos^2 |\phi - \theta|)$$

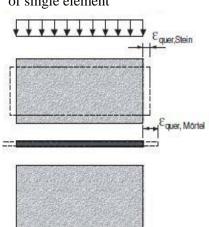
Damage Case d) Compression failure

According Schubert: $\mathbf{f_m} = \mathbf{a} \cdot \mathbf{f_b}^b \cdot \mathbf{f_{mo}}^c$ According EC6: $\mathbf{f_m} = \mathbf{k} \cdot \mathbf{f_b}^b \cdot \mathbf{f_{mo}}^c$

 $\mathbf{f_m} = \text{compressive strength of masonry}$

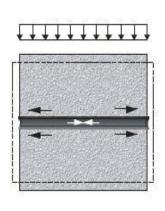
 $\mathbf{f_b}$ = compressive strength of brick

 $\mathbf{f}_{mo} = \text{initial compression strength in masonry}$


k value from EC6 table

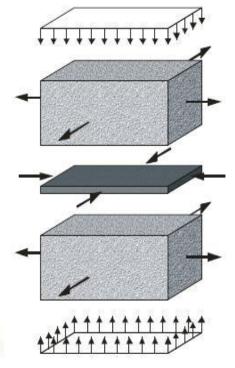
Schubert Table:

Stone	a	b	С
Solid stone	0,73	0,73	0,16
Hollow brick	0,55	0,56	0,46
LimeSandstone	0,7	0,74	0,21


Strength of mortar and brick:

Equer, Mörtel > Equer, Stein

Combining of elements


Equer, Mortel = Equer, Stein

Stein 3D - Zustand: Druck - Zug - Zug

Mörtel 3D - Zustand: Druck - Druck - Druck

Brick 3D – state: Compression-pull of- pull of

Tension state

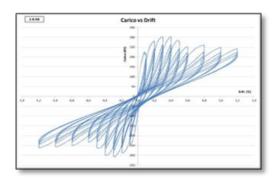
Mortar 3D – state: Compression-compression-compression

Calculation of missing properties

According Italian code	Table EC6 :						
Equation (1): $f_{tk} \approx 1,5.f_{vk0}$							
Equation (2): $f_m \approx 0.7$. f_b	f_{m0}	2,5	5	10	20		
Equation (3): $f_{tk} \approx f_b / 15$	f_{vk0}	0,08	0,18	0,22	0,26		
Equation (4): $\mathbf{f_m} = \mathbf{a} \cdot \mathbf{f_b}^b \cdot \mathbf{f_{mo}}^c$	Interpolation	0,1268	0,21096	0,24208	Calculated		
	Value f _m	3,67	8,87	15,52	To put in		

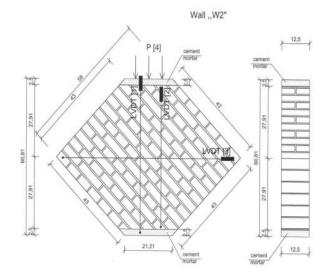
EXPERIMENTAL TESTS - PADOVA (ITALY), AND IZIIS (SKOPJE, MACEDONIA)

"Out of plan" tests



Non-reinforced wall

Walls Reinforced with Sisma Calce



Resistance for "out of plain" by reinforced wall has demonstrated increasing of resistance for approximate 54% and increasing of maximum deformation for 35%.

IN- PLAN STRENGTH TEST

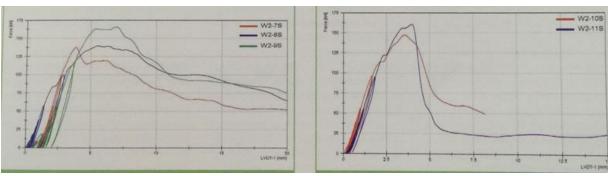
<u>Testing results of W2 type wall elements</u> to diagonal compression up to failure

Giving Shear and Tensile strengths

Case of Non Retrofitted Wall

				Comprehensive strength	Tensile
Wall	Date of testing	Cross-section	Maximum axial	$\sigma_{c} = \tau_{u} =$	strength
element		A (cm ²)	force P _{max} (kN)	P _{max} cos45° / A (kPa)	F _t (kPa)
W2-1	16.04.13	725	51	497	307
W2-2	24.04.13	725	43	419	259
W2-3	25.04.13	725	48	468	289

Testing results of W2R type Retrofitted wall elements to diagonal compression up to failure


Wall element	Date of testing	Maximum axial force P _{max} (kN)		Tensile strength F _t (kPa)	Ductility capacity
W2-4R	22.08.13	150	1462	903	5.1
W2-5R	23.08.13	128	1248	771	5.9
W2-6R	27.08.13	97	946	584	7.1

Testing results of W2S type **Retrofitted wall** elements to diagonal compression

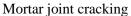
Wall element	Date of testing	Maximum axial force P _{max} (kN)		Tensile strength F _t (kPa)	Ductility capacity
W2-7S	29.08.13	138	1345	831	5.1
W2-8S	30.08.13	140	1365	843	5.5
W2-9S	02.09.13	165	1579	976	7.5

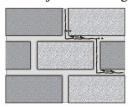
Two side retrofitted wall element

One side retrofitted wall element

Appearing of high ductility (3 times higher) Increasing of shear resistance for 300%

Damages on non-retrofitted model (0,35 g)

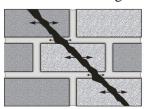

Damages on Sisma Calce retrofitted model (1,22 g)


Experimental values of tested Earthquake: Results comparison for both models

Experimental values of tested Earthquake					Tresults con	1001100	1101 000	I III GUCIO			
Earthquake	ı	Acc	BM -	Non Retrofitted Wall			BM - SR - Sisma Calce Retrofitted Wall				
•	Span %	input (g)	acc top	LP top (mm)	LP top - LPfoun.	Damages	acc top	LP top (mm)	LP top -	Damages	
		(5)	(g)	(11111)	(mm)		(g)	(11111)	(mm)		
Petrovac	36	0,16	0,26	6,4	0,34		0,25	5,7	0,29		
Northridge	16	0,18	0,34	13,5	0,26		0,21	12,8	0,21		
Petrovac	40	0,18	0,29	6,9	0,58		0,28	6,4	0,52		
El Centro	75	0,21	0,35	16,4	0,91	Initial	0,32	15,9	0,86		
Petrovac	45	0,20	0,32	7,8	0,77	fine	0,30	7,0	0,73		
Northridge	20	0,21	0,42	17	0,98	cracks	0,28	15,8	0,62		
El Centro	80	0,27	0,52	11,6	1,20	Further	0,37	10,9	1,11		
Northridge	25	0,23	0,47	21	1,04	propagation	0,33	20	0,79		
						of					
						initial cracks					
Petrovac	50	0,22	0,41	8,9	1,14		0,36	8,4	0,94		
Petrovac	70	0,32	0,61	12,2	1,29	Damages	0,55	11,9	1,60	Initial	
Petrovac	75	0,35	0,71	13,9	1,54	development	0,51	12,2	1,64	fine	
Petrovac	100	0,51					0,91	16,9	2,80	cracks	
Petrovac	120	0,60					1,09	20,3	2,98	Further	
El Centro	100	0,31					1,41	21,7	1,35	propagation	
Petrovac	150	0,82					1,29	23,9	4,26	of	
										initial cracks	
Petrovac	180	0,92					1,58	28,9	11,40		
Petrovac	220	1,03					1,76	36,99	20,10	Damages	
Petrovac	260	1,22					2,1	44,7	26,40	development	

Additional resistance for retrofitted model

CALCULATIONS and MATERIAL PROPERTIES



Behavior of composite material

Stone cracking

Behavior of stone

F_{t, Faser} F_{d, vertikal} F_{t, horizontal} F_{t, horizontal}

CALCULATION OF FIBER REINFORCEMENT DAMAGE CASES:

Modification of shear strength with Sisma Calce:

 $f_{vk}^{\ reinforced}$ = f_{vk0} +(n / t) . Ψ_f^{30} . f_f^{30} . $cos~30^o$

 ${\bf n}$ =fibre layers number; ${\bf t}$ =wall thickness (mm); ${\bf \Psi_f}^{30}$ =bonding efficiency factor for SismaCalce=43,3%;

 $\mathbf{f_f}^x$ =Strength of fibres: $\mathbf{f_f}^{90} = 1960 \text{ N} / 50 \text{mm}$; $\mathbf{f_f}^0 = 1817 \text{ N} / 50 \text{mm}$; $\mathbf{f_f}^{30} = 895 \text{ N} / 50 \text{mm}$

Modification of tensile strength with SismaCalce:

$$f_{bt,cal}^{mo} = f_{bt,cal} + n \cdot \Psi_f^{\theta} / t \cdot (f_f^{90} \cdot \cos^2 \phi + f_f^{0} \cdot \sin^2 \phi + f_f^{0} \cdot \cos^2 |\phi - \theta|)$$

Easy equations:

Modification of shear strength with Sisma Calce:

$$f_{vk}^{strength} = f_{vk0} + (n/t) . f_{SC,shear} = f_{vk0} + (n/t) . 6,71 \text{ N/mm}$$

Modification of tensile strength with Sisma Calce:

$$\mathbf{f}_{bt}^{\text{strength}} = \mathbf{f}_{bt} + (\mathbf{n} / \mathbf{t}) \cdot f_{SC,tension} \cdot (\mathbf{h} / \mathbf{l})$$

Height / Length (h/l)	4	2	1	0,5	
fsc,tension	19,55 N / mm	21,37 N / mm	23,58 N / mm	24,44 N / mm	

Calculation of fiber reinforcement (Example)

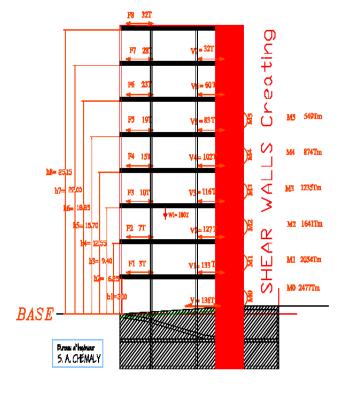
Type of wall <u>Unit: (N / mm²)</u>	$\begin{array}{c} \text{Non-} \\ \text{reinforced} \\ f_{vk0} \end{array}$	One side reinforced f_{vk0}	$\begin{array}{c} Two \ side \\ reinforced \\ f_{vk0} \end{array}$	$ \begin{array}{c c} Non- & One \ side \\ reinforced & reinforced \\ f_{bt} & f_{bt} \end{array} $		$\begin{array}{c} \text{Two side} \\ \text{reinforced} \\ f_{bt} \end{array}$	
Solid brick 200 mm	0,11	0,143	0,177	You must establish these values			
Solid brick 250 mm	0,11	0,137	0,164	experimentally			
Hole brick 200 mm	0,23	0,263	0,297	0,97	1,24	1,51	
Hole brick 250 mm	0,23	0,257	0,284	0,97	1,188	1,406	

Material Properties of different Stones. In Laboratories. Unit: $(MN/m^2) = MPa$

Material	\mathbf{f}_{tk}	$\mathbf{f}_{\mathrm{vk0}}$	\mathbf{f}_{m}	\mathbf{f}_{bm}	\mathbf{f}_{bk}	w (kN/m ³)
Hollow brick	0,3 (1)	Norm:0,2?	7,35 (2)	10,5	7,35	
Hollow brick Isoledil	1,93 (3)	0,2 (N)	20,3 (2)		29	7,2
Solid brick	1,26 (3)	0,1 (N)	13,3 (2)	15	19	17
Hollow brick before 1970	0,8 (3)	0,2 (N)	8,4 (2)	12		
Hollow rick after 1970	1 (3)	0,2 (N)	10,5 (2)	15		
Solid brick before 1970	1 (3)	0,1 (N)	10,5 (2)	15		
Solid brick after 1970	1,33 (3)	0,1 (N)	14 (2P)	20		
Aquila natural stone	11,73	0,12 (EC6)	40,14 (4)	164,5		26
Lime sandstone KA 2DF	1,53	0,11	7,72 (4)	20,57		20

EARTHQUAKE-RESISTANT PROTECTION RÖFIX SISMACALCE SYSTEM BENEFITS

- Saves human lives
- Improves buildings stability and ductility, a considerable deformation of the building can be achieved
- Increases the load-bearing capacity of masonry and protects the non-bearing walls at the limit load against damages, therefore cracks and partial damages cannot provoke a general structural collapse, which reduces the cost of eventual reconstruction
- Ensures a uniform distribution of stresses in walls
- Sustainable and eco-friendly material: energy consumption reduction; elimination of thermal bridges; breathable walls therefore healthy and comfortable room climate without condensation or mold
- This retrofitting system impresses with its easy use and low cost


APPLICATION ON A BUILDING OF GROUND FLOOR +7 FLOORS

Building structure composed by Columns and Slabs of Steel reinforced Concrete. The partition walls are hollow block masonry walls.

Four chosen masonry walls were retrofitted, two in each direction X and Y, by simply applying one Fiber reinforced Sisma Calce System.

The application of the System transformed these masonry walls into shear walls.

The hollow block Masonry walls problem is that they are FRAGILE like glass; they brake and crumble suddenly due to the lack of Elasticity and Plasticity.

Reinforced Sisma Calce system, is to bind to the wall to become "one body" with it, and to impart DUCTILITY to the wall, giving it Elastic and Plastic properties.

The seismic Forces and displacements design using simple Force Method give the Base Shear Strength, V = 1360 KN in each directions X and Y, and all other strengths and stresses.

When masonry walls are (superposed) from top to foundations, for example the external walls, these walls are considered load bearing walls holding part of the vertical load: tiles and secondary partitions; let us say 2 KN/m2 as minimum load.

The vertical load in the wall by linear meter, for one floor is \mathbf{p} , minimum = 12 KN / lm / floor, and In the ground floor masonry wall, under 7 floors loads: \mathbf{p} , minimum= 84 KN /lm. If the wall thickness \mathbf{t} is 20cm. The **vertical weight stress** in the wall is

$$\sigma_v = 0.42 \text{ MPa}.$$

In the above table: "Material Properties of different Stones", $\mathbf{f}_{vk0} = 0.2$ MPa for 20cm concrete hollow block, see above "Damage Case b) Shear sliding".

Before Sisma Calce Coating:

Initial shear stress resistance in the bloc, using Mohr circle equation: $\mathbf{f}_{vk} = \mathbf{f}_{vk0} + \mathbf{0.4} \, \sigma_v$

After Sisma Calce Coating on one side of the wall (n=1):

 $\mathbf{f}_{\mathbf{Rvk0}} = \mathbf{f}_{\mathbf{vk0}} + \mathbf{n} \ \mathbf{6.71} \ / \ \mathbf{t} = 0.263$ and the Shear stress resistance in the wall,

 $\mathbf{f}_{Rvk} = \mathbf{f}_{Rvk0} + \mathbf{0.6} \ \mathbf{\sigma}_{v} = 0.515 \ \text{MPa}$

In the Ground Floor, in X direction, $\underline{\mathbf{L}}$: the length of the wall we need to retrofit. (for 1 layer of Sisma Calce coating).

Base Shear Strength $V=1360~KN <=f_{Rvk}$. t. L. 2 (2 retrofitted walls), give L>=6.6~m If we can make the coating on the 2 faces of the walls, L>=3.3~m. The same issue in Y direction. If the height of the walls is 3 m, the total coated area in Ground Floor to be retrofitted: 80 m2. The same calculation for the 6th floor gives 60 m2 of coated walls area to be retrofitted. (NB.: the SismaCalce retrofitting for each apartment, cost # 3000 \$ approx.)

Traditional Old Houses

Let us consider a house composed by a Ground Floor + 2 upper floors, built with bearing walls of natural stones. Usually the walls of these houses are high (4m for ex). The same calculations as above, with $\mathbf{fvk0} = 0.12$ MPa for natural stone, gives L> 8m (1 layer) / direction, or L>4m (double layers).

Span is intensity of input earthqake Span% is percentage of earth excelaration Those are the datas, which comes from earthqake platform.

 I_{cal} depends on the wall height h_v , but V_{Rk} (shear and tension) must depend also on the length of the wall

$$I_{cal} = h_{v} \cdot \tan \varphi$$

The failure angle φ depends on the dimensions of the wall and especially on the ratio of the height h and the length l.

 μ is the friction coefficient in the characteristic sliding shear strength of the masonry (Mohr-Coulomb formula $f_{vk}=f_{vk0}+\mu\sigma_v)$

$$\alpha_{\text{gmax}}$$
 in \mathbf{k}_{eq} ? $\kappa_{\text{eq}} = \frac{g - a_{\text{vertikal,max}}}{g}$ coefficient that takes into account the effect of

the vertical acceleration of the earthquake $a_{\text{vertikal, max}}$ on the average normal stress due to vertical loads σ_v (q acceleration of gravity).

In case the vertical component of the earthquake isn't taken into account, $\kappa_{eq} = 1$;

In $V_{RK}^{tension}$ formula:

- $\alpha_{V} = \frac{M}{V_{Rd} \cdot I} = \frac{N_{Rd} \cdot e}{V_{Rd} \cdot I}$ is the shear ratio, where N_{Rd} is the design axial force acting on the wall with the eccentricity e and V_{Rd} is the design shear force;
- I is the length of the wall;
- $\frac{N_{Rd}}{I \cdot t}$ is the average vertical stress;
- t is the thickness of the wall.